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Direct Observation of Critical Fluctuations 
in a Binary Mixture 

D. Beysens,  2 P. Guenoun, 2 and F. Perrot 2 

Microscopic observations of concentration fluctuations in the range 1 500 #m 
have been performed in a number of binary fluids near their critical temperature 
(Tc). A heterodyne technique has been used. The temperature range ( T - T o =  
1 25 inK) is such that the sizes of the fluctuations are larger than or equal to 
the correlation length, measured usually as the inverse half-width of the struc- 
ture factor of the fluctuations. Image analysis has given some information about 
the free energy of the system determined from the intensity distribution function. 
Also, the shape of the fluctuations can be studied. These are self-similar over 
more than three decades, with a fractal dimension of Dr=2.8. This value is 
compared with a number of theoretical predictions. 
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1. I N T R O D U C T I O N  

What is the interest in visually observing fluctuations near a continuous 
phase transition? The degree of knowledge of critical phenomena is such 
that it seems that nothing really new might come out from such a study. 
The behavior of fluids and fluid mixtures, which belong to the same univer- 
sality class as the 3-D Ising model, has been much investigated and has led 
to a deep understanding of critical behavior [1]. We notice, however, that 
all experimental methods that have been used, including light-scattering 
techniques, enable only spatially averaged information to be obtained. The 
order parameter fluctuations are investigated through their correlation 
function C(f) or equivalently through their structure factor S(/~) (here f is 
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a space coordinate and/~ a wavevector). The typical length ~ (the so-called 
"correlation length") at which S(k~) takes the value 1/2 can be used as a 
measurement of the approach of the critical point. Although the static 
statistical properties of critical fluctuations are well-known, as are, to a 
lesser extent, the corresponding dynamical properties, no valuable local 
investigation method is available. A pioneering attempt by Debye and 
Jacobsen [2] was performed in the late 1960s. They used a phase-contrast 
microscope to observe in direct space concentration fluctuations which 
develop near the critical point of a polymer-solvent system of polystyrene 
and cyclohexane. They immersed both the microscope and the sample in an 
air thermostat which was controlled to within _+0.02 K; this thermal 
accuracy did not allow clear separation of the critical fluctuations from the 
onset of phase separation. No images were reported. No further develop- 
ments were made after Debye's death. To our knowledge, no other 
attempts have been reported up to the present study. 

Although the pedagogical interest of such observations is obvious, 
some limitations exist concerning the visualization technique. They are 
twofold: the image is by necessity a planar section (or a projection or both) 
of the bulk system, and the resolution is limited to typically 1 gin. The 
ultimate image resolution, or picture element (pixel) 6r, will have to remain 
in a range 6r> 1/~m ( - ~  at T -  To= 1 inK). 

It was therefore very surprising to us that we could actually detect 
well-defined fluctuations, in a temperature range T - T c < 2 5  mK (or 

> 0.2/~m) and whose typical length scale ranged up to the sample size. 
Another surprise came from the fractal-like shape of the fluctuations. These 
observations can, however, be related to some unusual aspects of critical- 
point phenomena. 

We believe that such a local and direct observation of critical fluctua- 
tions should elucidate the modern view of critical phenomena. For 
instance, it becomes possible to study the statistics of such fluctuations, 
whose high degree of correlation would allow Wilson's effective free energy 
to be measured. The morphology of these fluctuations is striking, and the 
measure of a fractal exponent would provide new insight into the possible 
connection between thermal and percolation critical points, where the 
fluctuations are considered as domains percolating at To. 

There are also a number of problems of current interest that could be 
studied. The 2, 4..., point correlation functions could be determined; the 
statics and dynamics of fluctuations under an external field (shear flow, 
thermal gradient, gravity, etc.) or at an interface solid-mixture or between 
the two phases below T~ could be followed. Dynamics related to a distribu- 
tion of length scales (stretched exponential) could also be investigated [3]. 
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2. EXPERIMENTAL 

Binary mixtures have been used because they allow a close approach 
to T c to be made without noticeable gravity effects. Thermal stabilization 
was of the order of +0.2 mK over a few hours and was provided by a 
water bath. Such a water thermostat suppresses the temperature gradients 
in the sample. 

The experimental cell (Fig. 1) was 2 mm thick so that multiple scatter- 
ing close to To does not blur the image. A high-quality photo lens (50- or 
100-ram focal length; f, 1.0 or 1.8 aperture) has been used in order to have 
a large working distance. A magnified image of the bulk system is directly 
formed on the sensitive photocathode of a video camera (CCD or Newicon 
tube). The ultimate optical resolution (one pixel) corresponds to 1 #m in 
the sample. For this resolution the field of view is of order 250 #m. 

The large aperture angle of the lens ( - 9 0  ~ ensures that the image is 
the projection of the bulk within a layer whose thickness is of the order of 
the resolution limit. The image is therefore simply a section of the bulk 
sample. 

The cell was illuminated by a nearly parallel white light beam (Fig. 1), 
whose temporal coherence length is of the order of 1 tim. The image of the 
refractive index fluctuations 6n(f, t) can, be interpreted as being formed by 
the interference of the transmitted beam (ET) with the light scattered by the 
above fluctuations (Es). This corresponds to a "heterodyne" arrangement. 
The use of more coherent light (laser) is not useful, On the contrary, it 
adds numerous interference patterns which blur the final image. 

The fact that {6n 2} increases near T~ makes Es increase, so that the 
contrast C of the above fluctuations becomes larger. This contrast 

PO / /~  PO' 

• \ 

Fig. 1. Schematic of the setup. CL, sample cell containing the 
binary fluid; WB, water bath for temperature control; WL, 
white lamp source; L1 and L2, lenses; L3, high-quality, large 
aperture, objective; F', focus of L3; P, pinhole; PO, plane of 
the object, whose image is in PO'; O, point object in PO, 
whose image is at O'. ( - - )  Path of the direct light, with trans- 
mitted field ET; (--)  path of the scattered light, with scattered 
field E s . 
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decreases with T - T o .  The intensity detected on the video camera plane 
(x, y) can thus be written as 

i ( x , y )  oc I E o l 2 + E o E s ( x , y )  oc l + C ( T - T ~ ) 6 n ( x , y , z = z o ,  t ) (1) 

Here z = Zo denotes the coordinate of the section. Since the refractive index 
fluctuations are proportional to the order-parameter fluctuations 6M (here 
the concentration fluctuations), Eq. (1) becomes 

i(x, y)  = i o + hi(x, y, t) (2) 

with 

6i(x, y, t) oc 6M(x ,  y, z = zo, t) (3) 

where i 0 is the average intensity. 
In terms of image analysis, the signal that is obtained is discrete and 

corresponds to the integration of Eq. (2) over a volume element v. This 
volume v corresponds roughly to 1 pixel in the image and is of the order 
of a few pixels (depth of field) in the direction z. Moreover, the video scan- 
ning time (z) has to be taken into account, which leads to a time integra- 
tion during the scanning period z = 40 ms. Therefore the useful signal at the 
pixel located at (x~, Yi) is 

6i(xi, Yi, t) oc ( 6 M ( x ,  y , z = z o ,  t ) )  . . . .  40ms (4) 

where ( ) denotes a spatial average and - -  a temporal average. 
In the temperature range investigated, the minimum relaxation time is 
always larger than 40 ms, so that the time integration has no influence. 
Equation (4) can thus be rewritten as 

6(xi, Yi, t) oc ((3M(x, y , z = z o ) ,  t ) ,  (5) 

After having been detected by the camera, the image is stored on 
a videotape and later digitized with 64levels (6bits) and over 
256 x 256 pixels. Typical images are shown in Fig. 2. A number of numeri- 
cal treatments (accuracy 16 bits) are then performed. 

The inhomogeneities of the incident beam and of the camera response, 
dusts on the windows, etc., are lowered by subtracting from the image 
under study another image taken at T>> To, where fluctuations are no 
longer visible. Then a histogram of the intensity levels is calculated (Fig. 3), 
which allows the average intensity io to be determined. More specific 
treatments are given below (see Section 3.2). 
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Fig. 2. Photographs of concentration fluctuations in the 
binary fluid of isobutyric acid and water. The field 
of view corresponds to 250/1m. (a) T -  To= 16inK; 
(b) T - T  c=lmK. 

A number  of binary fluids have been investigated: nitrobenzene- 
n-hexane, lutidine-water, isobutyric acid-water, lutidine-water, 
methanol-cyclohexane and its deuterated derivatives, and a microemulsion 
of dodecane-pentanol-water-sodium dodecyl sulfate (SDS). Fluctuations 
can be seen only in a range of concentration and temperature close to criti- 
cality: Ic-cJ ~ -  [ 0 - 0 . 0 3 ] ,  T - T o ( i n K ) -  [ - 1 - 2 5 ] .  The bulk character of 
these fluctuations was clearly evidenced by changing the plane of focus and 
by stirring the system. The dynamics of such fluctuations is striking; they 
develop and vanish at a rate which is a function of their size and of tem- 
perature. If one selects a fluctuation wavelength (A) by allowing only the 

Io i 

Histogram of a picture taken at T-- Tc = 1 mK 
(isobutyric acid-water mixture). 

Fig. 3. 
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light scattered at k = 2n/A to form the image (e.g., by put t ing a mask  with 
an eccentric pinhole in the focal plane of the lens), the corresponding typi- 
cal frequency goes to zero with decreasing k and decreasing T - T c .  This 
is in full agreement  with critical dynamics  [ 1 l. We did not  investigate this 
aspect further because the informat ion that  can be obta ined seemed to be 
the same as that  inferred f rom light-scattering techniques. 

3. C R I T I C A L  F L U C T U A T I O N S  

In order  to illustrate what  new phenomena  can be investigated, we 
repor t  the prel iminary study of two different problems.  

3.1. Statistics of Fluctuations and Free Energy 

On general grounds  the intensity distr ibution function P{6i(xi, Yi, t)} 
of a given distr ibution {6i(xi, yi, t)} at t ime t = t o (that we omit  in the 
following since we deal only with statics) which corresponds  to a par t i t ion 
function Z and a dimensionless free energy F{6i(x~, yj)} is defined as 

1 Yi)}] (6) P{(~i(xi, yi)} = ~ e x p  [ - - ~  F{6i(x,, 

~ ssian) 

Xiend f (Gaussian / ) 

Fig. 4. Sketch of the renormalization trajectories. Starting at 
a scale L ~ ~, the renormalization process continues up to a 
scale L~> ~. Here, when T=# T~ (~ finite), all trajectories con- 
verge to the (trivial) fixed point, where the statistics of fluctua- 
tions is Gaussian. When T= Tc (4 = oo), the trajectory goes 
to another fixed point (critical), where statistics are non 
Gaussian. Our study starts in an intermediate regime L > ~. 
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How is this experimental quantity related to the singular free energy of the 
real system near To? This question relates directly to the meaning of the 
renormalization trajectories in the renormalization-group theory (Fig. 4) 
[4]. Starting from a nonsingular free energy, a renormalization over 
volume L 3 leads to an energy singular in T-To and a Gaussian statistic 
when L >> ~ (trivial fixed point), except for T=  To. Our experiment, perfor- 
med at a resolution L ~-1 pixel > ~, therefore corresponds to an inter- 
mediate state on the renormalization trajectory. A deviation compared to 
what is found at the fixed point can be reasonably expected. 

The analysis of P{6i}, i.e., of the histogram (Fig. 3) shows that the 
probability distribution is Gaussian, with a temperature-dependent first 
moment 

- l o g  P ~  F= (e)(,~i) z 

with e = ( T / T c ) - l .  A prediction which can be compared with the 
experimental situation has been made by Bervillier and Bagnuls [5]. The 
temperature e gives a value for the ratio [L/r and therefore determines 
the location of the experiment on the renormalization trajectory (Fig. 4). 
By varying L at given E, one can expect a measurement of the exponent v 
by this "experimental" renormalization technique. That this exponent could 
be measured in the vicinity of Tc without varying the temperature is 
unusual but is a direct consequence of the renormalization-group theory. 

Unfortunately a precise comparison with the experiment is com- 
plicated by a background (B) contribution which comes from the noise 
associated with the image subtraction (Fig. 5). We expect a more. satisfac- 

t -  
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Fig. 5. Variation of the inverse width 
a(T) of the histogram of intensity fluc- 
tuations (see text). B is a background 
contribution from the camera noise. 
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tory comparison with a new image analysis system that we are presently 
setting up. A significant improvement might also be performed by using 
ternary mixtures where the correlation length is longer. Finally, further 
experiments up to T-To ~- 0.1 mK seem feasible without major difficulties, 
which might allow ratios (L/~)<0.1 to be reached. 

3.2. Morphology of Fluctuations 

Fluctuations can be considered as clusters or domains. A precise 
definition of these domains is not unambiguous, however. The more 
obvious assumption is to call a domain the locus of connected pixels where 
intensity i(xi, yi) exceeds an arbitrary value ii: 

i(xi, Yi) ;> il (7) 

This will separate the image into "white" clusters (i>~i~) and "black" 
clusters ( i<  il). The more natural choice is, of course, to make il = io, the 
average value of the histogram of intensity levels (Fig. 3). 

Such domains are reported in Fig. 6. They clearly do not resemble 
compact clusters. In order to determine to what extent they might be 
fractal objects, we calculated for each domain (p), characterized by its 
center of mass (Xp, yp) ,  its mass 

mp : ~ 1 = n pixels (8) 
i ~ p  

and its gyration radius 

Rp = ~pp .}-" (x i - x,)  2 + ( Y i -  yp)2] 1/2 (9) 
l ~ p  

Fig. 6. Fluctuation pattern before (a) and after (b) digitization at two levels 
(T-- T c = 1 mK). (Same scale as in Fig. 2). 
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The variation of mp with respect to  Rp is reported in Fig. 7. The fact that 
over more than three decades a linear relationship is obtained between 
log Rp and log mp demonstrates self-similarity. The associated fractal 
exponent dr, defined by 

mp ~ g~ f (10) 

has been found to be (case il = io) 

4=1.8+0.1 

In the above determination of dr, small clusters (smaller than 5 ~m) have 
been ignored. The final error accounts for the known sources of uncertain- 
ties and is much larger than the statistical deviation. This value did not vary 
systematically with temperature. Changing the threshold (ii) moves dr to 

I ~SmK(O.S)/ . /  
10'{- 3 / /  / "  - / _ / "  . ..,tmKIo, 

o. ~  " �9 �9 lo'{- .y- ?re,co.31 

1 2 10 10 2 

f i Y R A T I O N  RADIUS,  larn 

Fig. 7. Self-similarity of fluctuation clusters: mass 
of clusters with respect to their gyration radius. 
Typical data at two temperatures are reported, with 
typical intensity thresholds in parentheses. These are 
expressed as deviations from the average intensity in 
units of the fluctuation histogram full-width. 
Because all data overlap, they have been shifted by 
one decade for clarity. 

840/i 1/i-4 
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1.7 and lowers the range of available gyration radius. Since the value found 
is not very far from 2, which is the dimension of compact clusters, we 
checked all the procedures of measurement by taking the image of an 
assembly of dense circular dots of various dimensions. The same analysis 
as before gave dr = 2.00 + 0.02. 

The domains that have been analyzed are in fact the planar sections 
of 3-D domains. The relationship between a 3-D fractal object and a 
2-D section has been evocated by Mandelbrot [6]; the fractal dimension 
of the section (dr) is related to the fractal dimension Dr of the 3-D object 
through 

Dr= l + d r  (11) 

This relationship is obvious for dense domains. The fractal dimension of 
the 2-D projection of a 3-D object has been studied by Tence e t  al. [7]. 
When the thickness of the projection tends to zero, one recovers the above 
result. The fractal dimension of the critical fluctuations according to 
Eq. (11) is therefore 

D r = d r +  1 =2 .8+0.1  

That such fluctuations are fractal objects might appear to be very 
surprising. But this is not really so, as we explain in the following. 

Fractal fluctuations can indeed be obtained with an "ad hoc" defini- 
tion for the clusters. The basic idea relies on the fact that critical fluctua- 
tions diverge at To. The percolation correlation length ({p) eventually 
associated with the fluctuating domains should diverge also. In order that 
the percolation correlation length and the thermal correlation length 
diverge at the same (critical) temperature, with the same exponents, a 
special (and rather artificial) definition of the critical clusters (the so-called 
"physical clusters") had to be made [8]. Then the fractal nature of such 
clusters comes naturally from the percolation character of the transition. 
Their fractal dimensionality is expected to be 

D r  = D - f l / v  ~- 2.5 

Here D = 3 and the values fl =0.325 and v = 0.630 are those of the 3-D 
Ising model. This value is different from our finding Dr= 2.8. 

Note that the existence of fractal fluctuations is not in disagreement 
with the form of the structure factor at large k, 

S ( k )  ~ k - (2"~) (12) 

with r/--~ 0.03 the universal Fisher exponent. For monodisperse fractals 

S ( k ) ~ k  - '~ (13) 
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so that a naive reasoning would give Dr-~ 1.97. However, the distribution 
of mass of clusters P ( m )  modifies this result. With r the associated 
exponent 

P ( m )  ,..,m " (14) 

the structure factor at large k [9]  is 

S ( k )  ~ k -Dr(3 -3) (15) 

The comparison with Eq. (12) gives 

2 - q  
Df= 3 - z  - 2.5 (16) 

when using the value z -~ 2.2, which is generally found in the 3-D percola- 
tion problems [10]. 

However, the above arguments are based on the behavior of the 
correlation function of the fluctuations at short distance r < ~, where the 
correlation function of fluctuations can be estimated as 

( 6M(O) 5 M ( r )  } ~ r - ( l  + .) (17) 

In contrast, our study was performed in the range r > ~. 
The fractal character of clusters at this scale might also be due to a 

correlated percolation of sites (pixels) in the observed picture. Such a 
percolation mechanism leads indeed to the formation of dome/ins in two 
dimensions with the fractal dimensionality [ 11 ] 

df~- 1.9 

This last value is not very different from our experimental finding of 
d~= 1.8 

4. C O N C L U S I O N  

In this paper we have tried to convince the reader that the direct 
visual observation of critical fluctuations makes it possible to investigate 
new and exciting problems, including the study of the fluctuations statistics 
at different length scales and the connection of thermal critical points to 
percolation critical points.  
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